The Macroeconomic Effects of Oil Price Shocks on ASEAN-5 Economies

Mala Raghavan
Economics Research Workshop
Bank Negara Malaysia

9 November 2015
Outline

1. Introduction
 - Background: ASEAN-5’s Exposure to Oil Market
 - Objective

2. The Evolution of the Global Oil Market
 - Oil Price Shocks
 - ASEAN-5 and Oil Shock Transmission Mechanism

3. Econometric Framework
 - SVAR Framework
 - Model Specifications

4. Empirical Analysis
 - Global Oil Price
 - Responses of ASEAN-5 to Various Oil Shocks

5. Conclusion
ASEAN-5’s Exposure to Oil Market

- **ASEAN-5** - Indonesia, Malaysia, the Philippines, Singapore and Thailand
ASEAN-5’s Exposure to Oil Market

- ASEAN-5 - Indonesia, Malaysia, the Philippines, Singapore and Thailand
- trade intensity = imports plus exports as a percentage of GDP
ASEAN-5’s Exposure to Oil Market

- **ASEAN-5** - Indonesia, Malaysia, the Philippines, Singapore and Thailand
- **trade intensity** = imports plus exports as a percentage of GDP
 - high integration into global production chains - can be heavily influenced by developments in global activities
ASEAN-5’s Exposure to Oil Market

- **ASEAN-5** - Indonesia, Malaysia, the Philippines, Singapore and Thailand
- **trade intensity** = imports plus exports as a percentage of GDP
 - high integration into global production chains - can be heavily influenced by developments in global activities
- **oil self-sufficiency** = oil production less consumption over oil consumption

Presenter: Mala Raghavan

Oil Price and ASEAN-5

9 November 2015
ASEAN-5’s Exposure to Oil Market

- **ASEAN-5** - Indonesia, Malaysia, the Philippines, Singapore and Thailand
- **Trade intensity** = imports plus exports as a percentage of GDP
 - high integration into global production chains - can be heavily influenced by developments in global activities
- **Oil self-sufficiency** = oil production less consumption over oil consumption
 - highlighting the oil dependency - net oil exporter or net oil importer
Oil consumption is rising, highlighting the importance of oil in ASEAN-5. Oil intensity is marginally declining, due to a rapid rise in GDP compared to the rise in oil consumption.
Oil consumption is rising, highlighting the importance of oil in ASEAN-5.
Oil consumption is rising, highlighting the importance of oil in ASEAN-5.

Oil intensity is marginally declining, due to a rapid rise in GDP compared to the rise in oil consumption.
Rising economic and demographic growth - expected to increase energy consumption by 4.4% per annum.
Rising economic and demographic growth - expected to increase energy consumption by 4.4% per annum.

Industrial sector consumption - expected to grow at an annual rate of 5.2%.
ASEAN-5’s Exposure to Oil Market

- **Rising economic and demographic growth** - expected to increase energy consumption by 4.4% per annum.
- **Industrial sector consumption** - expected to grow at an annual rate of 5.2%.
- Oil usage as a proportion of GDP in the ASEAN-5 is about two to three times that of typical OECD countries (Downes 2007).
Rising economic and demographic growth - expected to increase energy consumption by 4.4% per annum.

Industrial sector consumption - expected to grow at an annual rate of 5.2%.

Oil usage as a proportion of GDP in the ASEAN-5 is about two to three times that of typical OECD countries (Downes 2007).

Theoretically, these economies are vulnerable to oil price shocks.
ASEAN-5’s Exposure to Oil Market

- **Rising economic and demographic growth** - expected to increase energy consumption by 4.4% per annum.
- **Industrial sector consumption** - expected to grow at an annual rate of 5.2%.
- Oil usage as a proportion of GDP in the ASEAN-5 is about two to three times that of typical OECD countries (Downes 2007).

Theoretically, these economies are vulnerable to oil price shocks.

- The oil price shocks that occurred between 2003 to 2008 however appear to have only caused modest disruptive effects on economic growth.
Rising economic and demographic growth - expected to increase energy consumption by 4.4% per annum.

Industrial sector consumption - expected to grow at an annual rate of 5.2%.

Oil usage as a proportion of GDP in the ASEAN-5 is about two to three times that of typical OECD countries (Downes 2007).

Theoretically, these economies are vulnerable to oil price shocks.

- The oil price shocks that occurred between 2003 to 2008 however appear to have only caused modest disruptive effects on economic growth.

- WHY???
The focus of this paper

- to examine empirically the macroeconomic effects of oil price shocks on ASEAN-5.
The focus of this paper

- to examine empirically the macroeconomic effects of oil price shocks on ASEAN-5.
- to assess why this time it only had minimal effects on these economies.
The focus of this paper

- to examine empirically the macroeconomic effects of oil price shocks on ASEAN-5.
- to assess why this time it only had minimal effects on these economies.
- to identify an appropriate operational conduct for monetary policy when facing with oil price shocks.
The focus of this paper

- to examine empirically the macroeconomic effects of oil price shocks on ASEAN-5.
- to assess why this time it only had minimal effects on these economies.
- to identify an appropriate operational conduct for monetary policy when facing with oil price shocks.
Oil price movements are almost synonymous to the movements in global economic activity until 2010. From 2010 onwards, however, the oil price kept rising despite the weakening of global economic activities.
Drivers of oil price

- Oil Production, Global Activity and Oil Price

Oil price movements are almost synonymous to the movements in global economic activity until 2010.
Drivers of oil price

- Oil Production, Global Activity and Oil Price

Oil price movements are almost synonymous to the movements in global economic activity until 2010.

From 2010 onwards, however, the oil price kept rising despite the weakening of global economic activities.
Three main drivers of oil price shocks as defined by Killian (2009)

- **Oil Supply Shock**
 - Driven by oil supply disruption.

- **Oil Demand Shock**
 - Driven by global economic activities.

- **Oil-Specific Demand Shock**
 - Driven by expectations about the future changes in oil conditions.

The economic consequence of each of these shocks are very different; relevant to monetary policy makers for devising appropriate monetary policy measures.
Drivers of oil price

Three main drivers of oil price shocks as defined by Killian (2009)

- **World Oil Production**
- **World Oil Price**
- **World Oil Demand**

- **Oil Supply Shock**
 - Driven by oil supply disruption.

- **Oil Demand Shock**
 - Driven by global economic activities.

- **Oil-Specific Demand Shock**
 - Driven by expectations about the future changes in oil conditions.

- The economic consequence of each of these shocks are very different;
Drivers of oil price

Three main drivers of oil price shocks as defined by Killian (2009)

- **Oil Supply Shock**
 - Driven by oil supply disruption.

- **Oil Demand Shock**
 - Driven by global economic activities.

- **Oil-Specific Demand Shock**
 - Driven by expectations about the future changes in oil conditions.

- The economic consequence of each of these shocks are very different;
- Relevant to monetary policy makers for devising appropriate monetary policy measures.
ASEAN-5 and Oil Shock Transmission Mechanism

World Oil Production → World Oil Price → World Oil Demand

- Oil Supply Shock: Driven by oil supply disruption.
- Oil Demand Shock: Driven by global economic activities.
- Oil-Specific Demand Shock: Driven by expectations about the future changes in oil conditions.

Assess the macroeconomic effects of each shock on ASEAN-5:
- Indonesia, Malaysia, the Philippines, Singapore and Thailand

Macroeconomic Variables:
- Trade Balances, Output, Inflation and Exchange Rates

Monetary policy responses

Presenter: Mala Raghavan
9 November 2015
ASEAN-5 and Oil Shock Transmission Mechanism

World Oil Production \rightarrow World Oil Price \rightarrow World Oil Demand

Oil Supply Shock
- Driven by oil supply disruption.

Oil Demand Shock
- Driven by global economic activities.

Oil-Specific Demand Shock
- Driven by expectations about the future changes in oil conditions.

Assess the macroeconomic effects of each shock on ASEAN-5
- Indonesia, Malaysia, the Philippines, Singapore and Thailand

Macroeconomic Variables
- Trade Balances, Output, Inflation and Exchange Rates

Monetary policy responses
Choice of Variables and Period of Study

- **Period of study:** January 2000 to December 2013 (168 Observations)

Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>os_t</td>
<td>Global Oil Production</td>
<td>Percentage change per annum</td>
</tr>
<tr>
<td>ga_t</td>
<td>Global Real Activity</td>
<td>Deviation from trend</td>
</tr>
<tr>
<td>op_t</td>
<td>World Oil Price Index,</td>
<td>Percentage change per annum</td>
</tr>
<tr>
<td>Domestic Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tb_t</td>
<td>Real Trade Balance</td>
<td>SA and detrended</td>
</tr>
<tr>
<td>y_t</td>
<td>Industrial/Manufacturing Production</td>
<td>Logs, SA and detrended</td>
</tr>
<tr>
<td>π_t</td>
<td>Consumer Price Index</td>
<td>Percentage change per annum</td>
</tr>
<tr>
<td>r_t</td>
<td>Inter-Bank Rate/TBR</td>
<td>Percentage</td>
</tr>
<tr>
<td>q_t</td>
<td>Real Effective Exchange Rate</td>
<td>Logs, SA and detrended</td>
</tr>
</tbody>
</table>

Sources of Data - US Energy Information Website; Kilian - UM Personal Website; Spot Oil Price: West Texas, Datastream
Structural Vector Autoregressive (SVAR) Framework

SVAR(p)

\[X_t = A_1 X_{t-1} + \ldots + A_p X_{t-p} + \varepsilon_t \] (1)

\(X_t \) is a \((n \times 1)\) vector of variables

\(A_i \) is a \((n \times n)\) coefficient matrix for \(i = 0, 1, \ldots, p \).

\[E(\varepsilon_t) = 0 \]

\[E(\varepsilon_t \varepsilon_t') = \Sigma \]

\(\Sigma \) is a diagonal matrix containing the variances of the structural disturbances.
Structural Vector Autoregressive (SVAR) Framework

\(A_0 \mathbf{X}_t = A_1 \mathbf{X}_{t-1} + \ldots + A_p \mathbf{X}_{t-p} + \mathbf{\epsilon}_t \) \((1) \)

- \(\mathbf{X}_t \) is a \((n \times 1)\) vector of variables
- \(A_i \) is a \((n \times n)\) coefficient matrix for \(i = 0, 1, \ldots p \).
- \(E(\mathbf{\epsilon}_t) = 0 \)
- \(E(\mathbf{\epsilon}_t \mathbf{\epsilon}_t') = \Sigma \),
- \(\Sigma \) is a diagonal matrix containing the variances of the structural disturbances.
SVAR(p)

\[A_0X_t = A_1X_{t-1} + \ldots + A_pX_{t-p} + \varepsilon_t \]

- \(X_t \) is a \((n \times 1)\) vector of variables
- \(A_i \) is a \((n \times n)\) coefficient matrix for \(i = 0, 1, \ldots p \).
- \(E(\varepsilon_t) = 0 \)
- \(E(\varepsilon_t \varepsilon'_t) = \Sigma, \)
- \(\Sigma \) is a diagonal matrix containing the variances of the structural disturbances.
SVAR Framework

SVAR(4)

A_0X_t = A_1X_{t-1} + \ldots + A_4X_{t-4} + \varepsilon_t

X_t = (X_1, t, X_2, t);

\varepsilon_t = [\varepsilon_{1, t}, \varepsilon_{2, t}]

X_1, t = [os_t, ga_t, op_t] - Oil block

X_2, t = [tb_t, yt_t, \pi_t, rt_t, qt_t] - Domestic block

Model interactions between the three oil variables (Killian 2009)

Model interactions with each of the economy - Foreign block

exogeneity restrictions

New Keynesian Theory to impose short run restrictions on the contemporaneous structure and empirical dynamics of the domestic variables;
SVAR Framework

SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]
SVAR Framework

SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]

\[X_t = \begin{pmatrix} X_{1,t} \\
X_{2,t} \end{pmatrix}; \quad \varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \]
SVAR Framework

SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]

- \(X_t = \begin{pmatrix} X_{1,t} & X_{2,t} \end{pmatrix} \); \(\varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \)
- \(X_{1,t} = [os_t, ga_t, op_t] \); \(\varepsilon_{1,t} = [\varepsilon_{os}^t, \varepsilon_{ga}^t, \varepsilon_{op}^t] \) - Oil block

Model interactions between the three oil variables (Killian 2009)

Model interactions with each of the economy - Foreign block

Exogeneity restrictions

New Keynesian Theory to impose short run restrictions on the contemporaneous structure and empirical dynamics of the domestic variables;
SVAR Framework

SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]

- \[X_t = \begin{pmatrix} X_{1,t} & X_{2,t} \end{pmatrix} ; \quad \varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \]
- \[X_{1,t} = [os_t, ga_t, op_t] ; \quad \varepsilon_{1,t} = [\varepsilon_{os}^t, \varepsilon_{ga}^t, \varepsilon_{op}^t] - \text{Oil block} \]
- \[X_{2,t} = [tb_t, y_t, \pi_t, r_t, q_t] - \text{Domestic block} \]
SVAR Framework

SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]

- \(X_t = (X_{1,t}, X_{2,t}) \); \(\varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \)
- \(X_{1,t} = [os_t, ga_t, op_t] \); \(\varepsilon_{1,t} = [\varepsilon_{os}^t, \varepsilon_{ga}^t, \varepsilon_{op}^t] \) - Oil block
- \(X_{2,t} = [tb_t, y_t, \pi_t, r_t, q_t] \) - Domestic block

- Model interactions between the three oil variables (Killian 2009)
SVAR Framework

SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]

- \(X_t = \begin{pmatrix} X_{1,t} & X_{2,t} \end{pmatrix} \); \(\varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \)
- \(X_{1,t} = [os_t, ga_t, op_t] \); \(\varepsilon_{1,t} = [\varepsilon_t^{os}, \varepsilon_t^{ga}, \varepsilon_t^{op}] \) - Oil block
- \(X_{2,t} = [tb_t, y_t, \pi_t, r_t, q_t] \) - Domestic block

- Model interactions between the three oil variables (Killian 2009)
- Model interactions with each of the economy - Foreign block
- Exogeneity restrictions
SVAR Framework

SVAR(4)

\[A_0X_t = A_1X_{t-1} + \ldots + A_4X_{t-4} + \varepsilon_t \]

- \(X_t = (X_{1,t} \quad X_{2,t}) \); \(\varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \)
- \(X_{1,t} = [os_t, ga_t, op_t] \); \(\varepsilon_{1,t} = [\varepsilon_{t}^{os}, \varepsilon_{t}^{ga}, \varepsilon_{t}^{op}] \) - Oil block
- \(X_{2,t} = [tb_t, y_t, \pi_t, r_t, q_t] \) - Domestic block

- Model interactions between the three oil variables (Killian 2009)
- Model interactions with each of the economy - Foreign block
- Exogeneity restrictions
- New Keynesian Theory to impose short run restrictions on the contemporaneous structure and empirical dynamics of the domestic variables;
SVAR(4)

\[A_0 X_t = A_1 X_{t-1} + \ldots + A_4 X_{t-4} + \varepsilon_t \]

- \(X_t = (X_{1,t}, X_{2,t}) \); \(\varepsilon_t = [\varepsilon_{1,t}, \varepsilon_{2,t}] \)
- \(X_{1,t} = [os_t, ga_t, op_t] \); \(\varepsilon_{1,t} = [\varepsilon_{os}^{1,t}, \varepsilon_{ga}^{1,t}, \varepsilon_{op}^{1,t}] \) - Oil block
- \(X_{2,t} = [tb_t, y_t, \pi_t, r_t, q_t] \) - Domestic block

- Model interactions between the three oil variables (Killian 2009)
- Model interactions with each of the economy - Foreign block exogeneity restrictions
- New Keynesian Theory to impose short run restrictions on the contemporaneous structure and empirical dynamics of the domestic variables;
Identification of the Contemporaneous Matrix

\[
A_0 = \begin{bmatrix}
1 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & | & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & | & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

(2)
Identification of the Contemporaneous Matrix

\[
A_0 = \begin{bmatrix}
1 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & | & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & | & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{43} & | & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & | & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & a_{73} & | & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & a_{83} & | & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

(2)
Identification of the Contemporaneous Matrix

\[A_0 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0^{(0)} & 1 & 0 & 0 & 0 & 0 & 0 \\
0^{(0)} & 0^{(0)} & 1 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0^{(0)} & 1 & 0 & 0 \\
0 & 0 & 0 & 0^{(0)} & 0 & 1 & 0 \\
0^{(0)} & 0^{(0)} & 0^{(0)} & 0^{(0)} & 0^{(0)} & 0^{(0)} & 1 \\
\end{bmatrix} \] (2)

Generate

- Impulse response function (IRF)
Identification of the Contemporaneous Matrix

\[\mathbf{A}_0 = \begin{bmatrix}
1 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha^{(0)}_{21} & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha^{(0)}_{31} & \alpha^{(0)}_{32} & 1 & | & 0 & 0 & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
\alpha^{(0)}_{41} & \alpha^{(0)}_{42} & \alpha^{(0)}_{43} & | & 1 & 0 & 0 & 0 & 0 & 0 \\
\alpha^{(0)}_{51} & \alpha^{(0)}_{52} & \alpha^{(0)}_{53} & | & \alpha^{(0)}_{54} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha^{(0)}_{63} & | & \alpha^{(0)}_{64} & \alpha^{(0)}_{65} & 1 & 0 & 0 & 0 \\
0 & 0 & \alpha^{(0)}_{73} & | & 0 & \alpha^{(0)}_{75} & \alpha^{(0)}_{76} & 1 & 0 & 0 \\
\alpha^{(0)}_{81} & \alpha^{(0)}_{82} & \alpha^{(0)}_{83} & | & \alpha^{(0)}_{84} & \alpha^{(0)}_{85} & \alpha^{(0)}_{86} & \alpha^{(0)}_{87} & 1 & 0 \\
\end{bmatrix} \tag{2} \]

Generate

- Impulse response function (IRF)
- Historical decomposition (HDC)
Identification of the Contemporaneous Matrix

\[
A_0 = \begin{bmatrix}
1 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
\alpha_{21}^{(0)} & 1 & 0 & | & 0 & 0 & 0 & 0 & 0 \\
\alpha_{31}^{(0)} & \alpha_{32}^{(0)} & 1 & | & 0 & 0 & 0 & 0 & 0 \\
\hline
\hline
\alpha_{41}^{(0)} & \alpha_{42}^{(0)} & \alpha_{43}^{(0)} & | & 1 & 0 & 0 & 0 & 0 \\
\alpha_{51}^{(0)} & \alpha_{52}^{(0)} & \alpha_{53}^{(0)} & | & \alpha_{54}^{(0)} & 1 & 0 & 0 & 0 \\
0 & 0 & a_{63}^{(0)} & | & a_{64}^{(0)} & a_{65}^{(0)} & 1 & 0 & 0 \\
0 & 0 & a_{73}^{(0)} & | & 0 & a_{75}^{(0)} & a_{76}^{(0)} & 1 & 0 \\
\alpha_{81}^{(0)} & \alpha_{82}^{(0)} & \alpha_{83}^{(0)} & | & a_{84}^{(0)} & a_{85}^{(0)} & a_{86}^{(0)} & a_{87}^{(0)} & 1 \\
\end{bmatrix}
\]

(2)

Generate

- Impulse response function (IRF)
- Historical decomposition (HDC)
- Variance decomposition (VDC)
Responses of global oil price to oil supply, oil demand and oil specific shocks

- IRF - All three oil shocks lead to an increase in real price of oil.
Responses of global oil price to oil supply, oil demand and oil specific shocks

- **IRF** - All three oil shocks lead to an increase in real price of oil.

 ![Graph showing the responses of oil supply, demand, and specific shocks](image)

- **HDC** - Since 2000, the oil-supply shocks have made comparatively small contributions to the world oil price.

 ![Graph showing oil price changes from 2000 to 2013](image)
Responses of ASEAN-5 to oil supply disruption shocks

- y (↓); π (↑); Transitory stagflationary effect; monetary policy tend to be more accommodative. Exporter: tb (↑) and q (↓); Importers: tb (↓) and q (↑);

Graphs:
- Malaysia
- Singapore
- Thailand

Legend:
- y: GDP growth
- π: Inflation
- r: Interest rate
- q: Real oil price
- tb: Trade balance

Axes:
- Time periods (0, 12, 24, 36, 48)
- Values for y, π, r, q, tb
Responses of ASEAN-5 to oil supply disruption shocks

- y (\downarrow); π (\uparrow); Transitory stagflationary effect; monetary policy tend to be more accommodative. Exporter: tb (\uparrow) and q (\downarrow); Importers: tb (\downarrow) and q (\uparrow);
Responses of ASEAN-5 variables to oil demand shocks

- \(y (↑); \pi (↑); \) Inflationary effect; monetary policy is tightened.
- Overall outcome is similar between the exporter and the importers.
Responses of ASEAN-5 variables to oil demand shocks

- y (↑); π (↑); Inflationary effect; monetary policy is tightened.
- Overall outcome is similar between the exporter and the importers.
Responses of ASEAN-5 variables to oil specific shocks

- Transitory (↑) in y; π (↑); Inflationary effect; monetary policy is tightened.

Malaysia Singapore Thailand

-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1
0 12 24 36 48 0 12 24 36 48 0 12 24 36 48

Presenter: Mala Raghavan
Responses of ASEAN-5 variables to oil specific shocks

- Transitory (↑) in y; π (↑); Inflationary effect; monetary policy is tightened.
Oil supply disruption shock played minimal role
Oil demand shock is dominant in explaining the variations in ASEAN-5 output
Between 2003-2008; oil demand shock has positive contribution to inflation and policy rate.
Oil-specific demand shock is also responsible for instigating inflationary pressure at various times.
Historical Decomposition of Output, Inflation and Monetary Policy

- Oil supply disruption shock played minimal role
- Oil demand shock is dominant in explaining the variations in ASEAN-5 output
- Between 2003-2008; oil demand shock has positive contribution to inflation and policy rate.
- Oil-specific demand shock is also responsible for instigating inflationary pressure at various times.

Presenter: Mala Raghavan
By decomposing the oil price shocks into supply-driven, demand-driven and oil-specific shocks, the paper examines the oil-macroeconomy relationship of the ASEAN-5.
Conclusion

- By decomposing the oil price shocks into supply-driven, demand-driven and oil-specific shocks, the paper examines the oil-macroeconomy relationship of the ASEAN-5.
- Identifying the underlying source of a oil price shock is important for assessing the effects of the oil shock on these economies.
Conclusion

By decomposing the oil price shocks into supply-driven, demand-driven and oil-specific shocks, the paper examines the oil-macroeconomy relationship of the ASEAN-5.

Identifying the underlying source of a oil price shock is important for assessing the effects of the oil shock on these economies.

Whether monetary policy is tightened in response to higher oil price depends on the impact of the various oil shocks on output relative to inflation.
Conclusion

- By decomposing the oil price shocks into supply-driven, demand-driven and oil-specific shocks, the paper examines the oil-macroeconomy relationship of the ASEAN-5.
- Identifying the underlying source of a oil price shock is important for assessing the effects of the oil shock on these economies.
- Whether monetary policy is tightened in response to higher oil price depends on the impact of the various oil shocks on output relative to inflation.
Conclusion

- Between 2000 to 2013
Between 2000 to 2013

- Output is largely influenced by demand driven oil shocks rather than the supply driven shocks
Conclusion

- **Between 2000 to 2013**
 - Output is largely influenced by demand driven oil shocks rather than the supply driven shocks
 - This explains why the recent oil shocks have been modestly disruptive to growth.
Between 2000 to 2013

- Output is largely influenced by demand driven oil shocks rather than the supply driven shocks
 - This explains why the recent oil shocks have been modestly disruptive to growth.
- The variations in the ASEAN-5’s monetary policy variables to the three oil shocks over the sample period are primarily in line with the movement in inflation.
Conclusion

Between 2000 to 2013
- Output is largely influenced by demand driven oil shocks rather than the supply driven shocks
 - This explains why the recent oil shocks have been modestly disruptive to growth.
- The variations in the ASEAN-5’s monetary policy variables to the three oil shocks over the sample period are primarily in line with the movement in inflation.
 - This shows that the ASEAN-5’s central banks are focussed in maintaining price stability.
Conclusion

- Between 2000 to 2013
 - Output is largely influenced by demand driven oil shocks rather than the supply driven shocks
 - This explains why the recent oil shocks have been modestly disruptive to growth.
 - The variations in the ASEAN-5’s monetary policy variables to the three oil shocks over the sample period are primarily in line with the movement in inflation.
 - This shows that the ASEAN-5’s central banks are focussed in maintaining price stability.
 - The effects of demand driven shocks are similar across importers and exporters of oil; however the effects of supply driven shocks differs between these two groups.
Conclusion

- **Between 2000 to 2013**
 - Output is largely influenced by demand driven oil shocks rather than the supply driven shocks
 - This explains why the recent oil shocks have been modestly disruptive to growth.
 - The variations in the ASEAN-5’s monetary policy variables to the three oil shocks over the sample period are primarily in line with the movement in inflation.
 - This shows that the ASEAN-5’s central banks are focussed in maintaining price stability.
 - The effects of demand driven shocks are similar across importers and exporters of oil; however the effects of supply driven shocks differs between these two groups.
Conclusion

- As small open economies there is little the ASEAN-5 can do to influence future oil price shocks.
Conclusion

- As small open economies there is little the ASEAN-5 can do to influence future oil price shocks.
- However, these economies can pursue prudent monetary policy measures that are more supportive of growth.
As small open economies there is little the ASEAN-5 can do to influence future oil price shocks. However, these economies can pursue prudent monetary policy measures that are more supportive of growth. This is crucial for the operational conduct of monetary policy for achieving price and output stabilities.
Thank You